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DYNAMICS IN PARABOLIC EQUATIONS =AN EXAMPLE

" IJackK. Hale

Division of Applied Mathematics
Brown University, Providence, R. I. 02912 U.S.A.

Abstract: For a parabolic equation, results are given about the
orbits which connect equilibrium points. The approach is based
on the theory of dynamical systems and the maximum principle.

J. The basic problem.

A system of nonlinear parabdlic equations defined on a
bounded domain generate a nonlinear semigroup of transformations

(T (t),t>O) on some Banach space X. The parameter p is sup-
posed to represent the ellipti. operators in the parabolic equa-
tion, the region a where the equation is defined, the non-
jlinear functions in the equation and the boundary conditions.
!The basic problem is to study how the qualitative properties of

" the orbits defined by T (t) depend on the parameter p.

I Because T.(t) arises from parabolic equations on a bounded

domain,, one generally has

IT(t), t >'O, is a completely continuous operator (1.1)

I (t) is one-to-one for all t. (1.2)

-In particular, (1.1) implies that every bounded orbit belongs to
" 'a compact, set. Thus, the w-limit set of a bounded orbit is a
;' nonempty, compact, connected set of X which is invariant under

!': the semigroup T (t). We say a set M in X is invariant for
Tj(t) if, for amy tp E M, there is a function x(ttp) defined
for t E R, x(O,(p) = 0, x(t,() E M, t E R, and, for any T E R,

', Tj1(t)x(T,(P) N x(t+TtP), t > 0. We call x(t,to) a backward
extension of. tp and write x(t,Vo) - T,(t)co for t E R. Under

Approved for pub!ic role 199%........... 0 3 4



: condition (1.2), backward extensions are unique. If a backward
extension of (p exists and belongs to a compact set, then the
ca-limit set exists and is nonempty, compact, connected and in-
variant (see [Ha2]).

An important role in the theory is played by the set,

A' {( =UEX: T (t)cp is defined and bounded for t ER), (1.3)

which contains the limit points of all bounded orbits as well as
much more. In fact, one has the following elementary result.
1Lemma 1.1. If A is compact, then AV is the maximal compact
invariant s.et of 11X. Furthermore, (1.2) implies that TV(t) is.
a group on A..

* One way to ensure that AV, is compact is to assume the
existence of invariant regions for the parabolic system (see [Slj).
Another weaker condition is to assume that the system is point
dissipative that is, there is a bounded set B a X such that,
for .any tp E X, there is a to = to(tp,B) such that TV~(t)cp E B
for t > to. This condition implies the following result.

Theorem 1.2. If TV(t),'t > 0, is completely continuous and
point dissipative, then there is a maximal compact invariant set
A~ for (T11(t),t > 0), A~ is uniformly asymptotically stable
and attracts bounded sets of X; that is, for any bounded set
IJ i. Xdist(T 11 (t)U,A.) -i. 0 as t + .If TV(t) i n-o
onthen T (t) is a continuous group onAV

The basic steps in the proof are as follows. One first

proves that there is a compact set K in X such that for any
compact set H in X, there is a neighborhood V of H such

.. that dist(T1 1(t)V,K) -. 0 as t + .This property implies there
es a maximal compact invariant set A, which is uniformly
asymptotically stable and attracts neighborhoods of compact sets.
The compactness of T(t) for t > 0 can be used to complete
the proof.

The above theorem is actually true for much more general
4A semigroups (Tv(t),t > 0). In fact, one need only require that

T(t) is an a-contraction for t > 0. This permits applications
'to a much broader class of problems including some hyperbolic
systems (see [Ha3]). We do not consider such general cases here

" iand refer the reader to [Hall for a complete proof of the above
''..result as well as historical references. The discussion is also

contained in cHa2]. However, an error in the statement of one
result in (Ha2l requires a reordering of the material and this

:' 1reordering can be found in [Hal].

1*. **~Ib Ib
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We remark that it is not necessary to consider all of X to
obtain an interesting invariant set A,. One could have a sub-
set Y of X which is positively invariant with respect to
T,(t). Point dissipative is then defined relative to the inter-,
section of bounded sets with Y.

P The basic problem in the qualitative theory of parabolic
equations is to study how Ay and the flow on the invariant set
A change with the parameter V.

Before giving specific examples.which illustrate the above
remarks, let us state another interesting implication of point
dissipativeness, a proof of which can be found in [HL 1].

I.,

' Theorem 1.3. If TV(t) is completely continuous for t > 0 and
point dissipative, then there is an equilibrium point of TU(t);
that is, there exists a cp in X such that T(t)cp = pV for

4 ~' all t.

When TU(t) is the semigroup generated by a system of para-
bolic equations, Theorem 1.3 implies the existence of a solution
of the corresponding elliptic boundary value problem. For some
types of problems, this approach could be easier to obtain the
existence of solutions of the elliptic system (see Al],[A21,[A3),

~[X1J).

2. An example. In this section, we consider the simplest non-
* trivial parabolic equation. In spite of its simplicity, there

are several unanswered questions whose solution would lead to a
better understanding of the role of-diffusion in the dynamics.

I Consider the scalar equation

ut inu + Af(u), 0 < x < ,xx (2.1)

Su= 0 at x = O,

with A > 0 being a real parameter and f(u) being a given non-
' linear function of u. If

* ([ 2x) -F((p)]dx,  F(u) f , (2.2)

and u(t,x) is a solution of (2.1), then

, V(u(t,x)) - 0 o
dt0

4 Theorem 2.1. If

F(u)-..-m as u ± (2.4)
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then Eq. (2.1) generates a Co-semigroup TX(t), t > 0, on
.X = HO(Ow), each orbit is bounded and has w-limit set as an
equilibrium point. There is a maximal compact invariant set AX
for TX(t) which has the stability properties mentioned in

F Theorem 1.2. Finally, if p E AX, then the a-limit set of ip
is an equilibrium point.

The equilibrium points of (2.1) are the solutions of the
equation

u + xf(u) = 0 0 < x < W
I xx

u = 0 at x =fir (2.5)

-That (2.1) generates a C -semigroup is given in Henry [He 1].
The fact that the w- and a-limit sets must be a single equili-

* brium point has been proved by a number of people (see Zelenyak
[Z 1], Matano [M 2], Hale and Massat [HM 1]). Relation (2.4)
implies the set of equilibrium points is bounded. Since every
orbit approaches an equilibrium point, one obtains point dissipa-
tive.

An equilibrium point u0  is hyperbolic if no eigenvalue of
the operator a lax2 + Xf (uo) on X is zero and it is called
stable (hyperbolic)if all eigenvalues are negative. The unstable

• manifold WU(u0) is the set of tp E X such that T. (t)P is
defined for t < 0 and -.- u0 as t-.-. The stable manifold

• Ws(u 0 ) is the set of (p E X such that T. (t)cp -) un as t .
" The set WU(u0 ) is an embedded submanifold of X of finite

dimension m (m being the number of positive eigenvalues of the
: above operator). The set WS(u0 ) is an embedded submanifold of

codimension m(see [He 1]). These manifolds are tangent at u0
" to the stable and unstable manifolds of the linear operator

a . 2/ x2 + f' (u0 ) on X.

The following remark is a simple but important consequence
of Theorem 2.1.

' Corollary 2.2. If (2.4) is satisfied and there are only a finite
number of hverbo.ic equilibrium points T1,2, .... Wk Of (1.1)
with each being hyverbolic, then

k
* A U WU(4p1)' ,Jul J

* '' Corollary 2.2 states that AX is the union of a finite
number of finite dimensional manifolds. The complete flow on

** AX seems to be difficult to describe in the general case.
However, some nontrivial information is easily obtained if we
make additional hypotheses.

- e *e, ,l •r~~ .,r,~



Theorem 2.3. If the conditions of Corollary 2.2 are satisfied

and (Pl(x) < ( 2 (x)<...<tpk(x), 0 < x < w, and dim' Wu(j) < 1,
then k is odd, k = 2p+l, P 1  is stable hyperbolic and (P2'
is unstable for all j with t9ie w-limit set (a-limit set) of

|being T2j+l 2j-1 

Proof: If Ti is unstable, then dim WU((i) = 1. Since Wu(pi)
is tangent at Ti to the line spanned by the eigenfunction

corresponding to the positive eigenvalue of a2/ax2f'(i) on
X and this eigenfunction has no zeros on (O,w), it follows
'that there is a solution u(t,x) of (2.1) defined for t EJR
with limt ,_ 0u(t,x) = qi(x) and u(t,x) > pi(x) for t suf-
ficiently negative. The maximum principle and our hypothesis onK ' cpi+I implies that pi(x) < u(t,x) < Cpi+l(X) for 0 < x < w.
Thus, limtu(t,x) i+l(X). The same argument shows there is
a 4 E Wu(W.) such that the w-limit set of * is Pi-1. Since
AX is stable, PI and (ok are stable hyperbolic and the
theorem is proved.

Corollary 2.4. Under the hypotheses of Theorem 2.3, the global
dynamics of (2.1) is determined by the local bifurcation of
equilibrium points.

Theorem 2.3 has immediate application to positive solutions
of Eq. (2.1). In fact, if X+ = {(p E X: (p(x) 10, 0 < x < w),
and TA(t): X+ * X+ , then we get the maximal compact invariant
set Al in X+ . In this case, the dim Wu(p) < I for any equi-
librium point. Thus, if the equilibrium points are hyperbolic,
then the conclusion of Theorem 2.3 is true. For another dis-
cussion of this latter example using the Conley index, see
Smoller [S 1].

Remark 2.5. Using the same proof as above, one observes that the

conclusions of Theorem 2.3 are true if uxx is repl ced by Au
and (0,w) is replaced by a bounded open set a cI.

We also remark that the strong conclusion in Theorem 2.3 and
'I Corollary 2.4 are not consequences of only dim Wu((j) < 1. The

parabolicity is used in an essential way. The reader I's referred
to Hale and Rybakowski [HR 1J for an example of a scalar gradient-

' like delay equation where the conclusions of Theorem 1.4 are not
true even though the dimension of the unstable manifold of each
equilibrium point is < 1.

Let us now return to the general discussion. When the
equilibrium points of (2.1 are hyperbolic, Corollary 2.2 gives
AX as the union of the unstable manifolds of the equilibrium
points. The complete dynamics on AX will only be known whenF we know the specific way in which the equilibrium points are
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connected to each other by orbits. In an effort to learn more
about this, we introduce some other invariant sets of AX.

Let

Ai = ((p E AA:fTj(t)p,t E R as well as its (2.6)

a- and w-limit sets have exactly

j zeros in (0,0).

Each set AJ is compact and invariant.

Lemma 2.6. Suose f(0) = 0. If (p E AX %UA with a-limit
se nA'gn -lmtstJnA then j>k.

Proof Suppose such a (p exists. Since, as t + --, TA(t) +0
-E', an equilibrium point with j zeros in (0,w) and since

the z ros of * are simple, it follows that TA(t)tp has j
zeros in (0,w) for t < - T with T sufficiently large. Also,
TA(t)cp has j + I extreme values in (0.wr). Also,
TA(t)t+ nEAk, with k simple zeros and k +1 extreme values

in (0,w). Thus, if tp = TX(-t) , then TA(t)cp and the
results of Matano IM 1) imply that the number of extreme values
of t must be > the number of extreme values of n. This implies
j >. k. But since .j k, we have the result.

The condition f(0) = 0 is, in general, necessary to obtain
the coficlusion in Lemma 2.6. If f(O) 0 0, then the best general
.result would.be J >k - 2 (see [Ml]).

Let Mi E AX, i = 1,2,...,p, be compact invariant sets in
AX. Following Conle.[C 1], we say {Mi) is a Morse decomposition
of AA if tp E AX*-,UiMi implies there are integers j > k such
that the w-limit set of p is in Nk and the a-limit set 4 of p
is in Mi.

Under the assumptions of Lemma 2.6, f(0) = 0 implies u = 0
is an equilibrium solution of (1.1). Thus, the set (0) must be
included with the Al in (2.6) in order to have any hope for a
Morse decomposition. Since Lemma 2.6 says nothing about (0),
more detailed information is needed about the behavior of the
solutions near u = 0. However, we can state the following
general consequence of Lemma 2.6.

" Theorem 2.7. Suppose f(0) = 0 and the sets At, k=D,l,...,p,
are defined in- I.6 and let A +T(= (0). If no orbit in A, has
w-limit set A , then the sets (At, k D,-,...,p+l) form a
Morse decomposition for AA.

1r . -



Other variants of Theorem 2.7 can easily be given if one
knows more details about the stable and unstable manifold of

* u = 0 in AA.

* To introduce some other ideas, let us consider the special
case of equation (2.1) studied extensively by Chafee and Infante
[CI 1] and Henry [He 1] , where

f(o) = o, f'(o) =
(2.7)

lim sup f(u)/u <0, uf"(u) > 0 if u 0.

Theorem 2.8. If f satisfies (2.7) and X E(n 2 , -n l )  n an
integer, then there are exactly 2n~l equilibrium points a- = 0,

+ - + -
0 3., j=O,l...,n-l, where a.,a. have j zeros in (0,T),

+ + Ju
dim W (a- =j, 0 < j : n-l, dim W (a.) =n and.

AX = (UWu(M±))UWu(a).

With the A k defined as in (2.6) and A = {a = 0), the set

{AW,AA, k=0,l,2,...,n-l1 is a Morse decomposition of AI.

Proof. The first part may be found in [He I]. We prove that
a. = 0 is completely unstable in AX. In fact, any function in
WS(a.) except zero must have at least n zeros and n+l extrema.
The results of Matano [M 1] imply the assertion. Theorem 2.7

Scompletes.the proof.

Remark 2.9. The function ajo-] is uniquely specified by

, requiring that da(0)/dx > 0 [doi(O)/dx < 0]. Also, the proper-
J J +

ties of the orbits in the phase plane imply a 2j+l(-x) = a 2j+l(x).

Although Theorem 2.8 gives some information about orbits
which connect equilibrium points, it is very imprecise. One would
like to have a better understanding of exactly which connections
exist. Henry [He 1] has given a complete answer to this problem
for n a 0,1,2,3, for f(u)...f(-u). We will reprove this result
in a slightly different way and, at the same time, give some more
information which will hopefully point out the difficulties in-
volved for larger n.

For the statement of the next result, some additional nota-

tion is needed. The set WS(ac) is an embedded submanifold of

X (see [He l,p.ISS ff)of codimension n and Ws (a ) is an
':" embedded submanifold of codimension J. The set Wu(,,,) is



tangent at a to the linear magifold of X spanned by eigen-

functions of the operator 82/;x + f'C(a) on X corresponding

to the positive eigenvalues 0 < A11 ., < 1n-2 o<..<' . The
* Ae-oj eigenfunction . also has j zeros in (0, r for each

One can construcl'an imbedded (n-j)-dimensional submanifold

I eu(a.) c Wu(a) for j=0,1,...,n-l which consists of all orbits
which approach a. as t + -- with an exponential rate

xj,,,,. Let

w* (ac) = W C(.) (a). (2.8)

In the same way, for any j < k, k = 0,1,...,n-l, one can define

WCUz(a = W(ak) %. (2.9)

The set Wu (ak) is a (k-j) dimensional submanifold of WU(a

We also let
cn,k n ir T(t)(p E Ak} (2.10)CX  {(P E A x :lim T X(t)(o E A X X

"+C t --

and let y(Qp,f) designate an orbit whose a-limit set is tp and
to-limit set is .11,

Lemma 2.10. If f satisfies (2.7), is odd and A E (n ,(n+l)2),
then

IL  o~k, k = ,

k * -+ -
C.o W (a k U W (a k) M

Proof. From the oddness of f and the existence of the Liapunov
functional V in (2.2), it is easy to see that Ck,k

* +We now show that there is a special type of orbit from a
to aO . As remarked before, the set WU(a.) is tangent at O

to the linear mnnif ld of X spanned by the eigenfunctions of
the operator /ax? + f'(a .) on X corresponding to the
positive eigenvalues 0 < An-l,...< A0, These eigenfunctions
have, respectively, n-l,...,l0 zeros In (0,w). Thus, there
is a p E X such that TA(t)(p, a. as t + -- and TA(t)(p(x) > 0
on (0,w) for t < - T for T sufficiently large. The maximum
principle implies TX(t)tp(x) > 0 for all t and, thus, the
w-limit set is an equilibrium point with no zeros in (0,w); that

- is, a+- The same type of argument shows that y(a,a) exists.
-- Continuity with respect to initial data and the fact tfia\

-*..



,ota 0 are stable implies the assertion that C; M W(a ).
0++

To show y(aj,a j > 1, exists, one proceeds in the samei 0 +
way as above to find a cp E X such that Tx(t)(p o a as t --

and Tx(t)CP(x) > a+(x) on (0,w). Then the w-limit set of cp
+ J +

must be > a (x) on (0,w). From the manner in which the aj(x)

are constructed from phase plane analysis, it follows that no
equilibrium point is larger than a(x) on (0,w) except a++' - - + - -). 0

In the same way, one obtains y(aj a0),y(aj a0),Y caj a0  A

'-e ' c use of continuity in the same way as above shows that CkO M

WI (a+U)wI ak)- It remains to show equality.

Since ao,a0 are stable, it follows that the set

x =X (2.11)

is invariant under T t), has no interior and X contains all

the equilibrium points a , j > 1, and a as well as their

stable manifolds. Furthermore, if 6 is any continuous curve

joining a0, to a0, then 6 ( X0 f 0 . +
0000

Now suppose CX1 contains an orbit y from a to a0
which is not the ones constructed above. Then the oddness
of f implies -y goes from a6 to ao. The orbits
y,-y WY(a) where W(a,.) is defined in (2.8). The openness
of W (aM),WS(ao) implies that, in a neighborhood U of a.,

!-e.. --- the set X n U is a submanifold of codimension 1. This con-

- tradicts te vroperty that a fl x0 for any continuous curve
5 joining at to a0 . Doing the same argument for a- com-
pletes the proof of the theorem. k

2 2
Lemma 2.11. Suppose f satisfies (2.7), A E (n ,(n+l) ) and

is an equilbrium point with j .+:k zeros and- tp is an equili-
brium point with j zeros in (O,w). Then any orbit y(*, )
joing I rom to P must belong to W'j(*).

Proof. Let (V be an equilibrium point with j +k zeros and let
be an equilibrium point with j zeros. Then the manner in

which the equilibrium points are constructed from the phase plane
implies that - tp has J zeros in (0,:) and j + I extreme
values. If u - + v in (2.1), then Wu(0) for the new
equation has dimension J + k with the basis for the tangent
manifold at zero being given by functions with 0,1,...,j+k-l
zeros in (O,w). Since * - cp is an equilibrium point for the
new equation with j + I extreme values in (0,w), one can apply

+ - " I "I I I :' 1 -
"°
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.L tsi44ectc.4-the results of Matano [Ml] to obtain the first assertion in the, ;P Lemma. The last assertion is obtained in the same way.

To point out implications of this lemma, define

S 0 = Ax ,A (2.12)

x k-k

+ S
The points aoao are stable in S2. Also, Lemma 2.11 (or
Lemma 2.10 with k=l) imply that a,, a, are stable in S1.
Furthermore, Lemma 2.10 implies these are the only stable points
in S1 and dim[WU(at)f Si] = k-i, k=2,3,...,n-l, dim[wU(a.)nSl=k x
n-l. Lemma 2.11 and the symmetry hypothesis implies

,1 = w u w' 1 i2) 2{y(ca)+ + y(a +' - - )iY(aA INx = la ) U WI  _ {Ya2a 1)  ,2 1• 2

In general, we can assert that a + are stable in S

for every j. This is a consequence o1' Lemma 2.11. For j=n-l,
this implies ct+ .,a" n is stable in A The only other• ' n-i n-i n-i

, - equilibrium point in S is a,. and Lemma 2.11 implies
Z ,n-1 u +

; -" C = nl(a..) = {y(ca ,n1),Y(a.,an-)}.

For j=2,3,...,n-2, we are unable to analyze the fine
structure of the flow at this time. To see the difficulties,
suppose = 2. Then +z - are stable in Sj. From what has
been proved up to this point, there is the possibility that
"a,a3 are also stable in S ; that is, the two dimension unstable
manifold of these points in S have w-limit set {atai}. If
such things can occur, then the flow can be very complicated and
can change its qualitative, properties without going through a
local bifurcation.

Summarizing the nicest part of what has been proved, we
obtain the following result of Henry [He 1].

Theorem 2.12. If f satisfies (2.7), is odd and
A E (nz,(n+i)2),-n=0,1,2,3, then

Cm,k a U u*a ±1 n- >m>k>0CA Wk(ca m Uwm cam) {( a ) k

c , .Wu* ya,
cka.() • {y( ,ciQ)), n - 1 > k > 0

~Ak k "-

A (A k { U Cx mj U (A66 U c71
* Um*



Theorem 2.12 says that A is like a ball of n-dimensions
'if X E (n2 (n+1)2), n=0,1,2,3. The pictures of A and the
flow on AI: are shown below.

a a

Sa a+ a

0 00
01

01 aaa a

n 0 n=l n =2 n= 3

For n < 3, Theorem 2.12 asserts that the changes that
occur in the dynamics on AX for X < 16 come about only through
local bifurcation. A proof that the same situation prevails for
all X or a counterexample would be equally interesting.
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&ye.;,o eigenfunction for A.. has j zeros in (O,t) for each j.
6" / -- 7 One can construct anJ0 imbedded (n-j)-dimensional submanifold

,; i
I j

S0. l

: :'I

! ,1

4t

A.. I

on. &.iiA --'*4' The above theorem is actually true for much more general
€i "semigroups {Tu(t),t >_ 0). One needs only that Tv(t) is compact

' dissipative and an a-contraction for t > 0.. This permits appli-
"" cations to a much broader class of problems including some hyper-
" bolic systems (see [HA 31). We do not consider such general cases

here and refer the reader to [Ha l) for a complete proof of tne

above result as well as historical references. The discussion is
4 also contained in [Ha 2] . However,. an error in the statement of

one result in [Ha 21 requires a reordering of the material and
this reordering can be found in [Ha l].
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1:1 the results of Matano [M 1] to obtain the assertion in the
SV Lemma.

I1
!

I,

f9~-I41- ~"ffuse of an argument similar to the above shows that C

,
I I

II

,0 .t

4 I

• [0. R eauilibrium point in{ Sn -l  is a. and, thus,
.C;T 'C n-I WU (a2c. *+ C,-lC -n1 .

,* i

'0 '3¢the set XO nl u is a proper subset ofa submanifold of codimen-
-- PP94sion 1. This contradicts 6 n x0 o for any continuous curve

-'- J(Ha 1] J.K. Hale, Some recent results on dissipative processes.p.152-172 in Lecture Notes in Math. Vol. 799 (Ed.A.F. Ize'),
Springer-Verlag, 1980.

b~ 4i ~ Continuityp the Lyapunov functional, X0 having no interior and

, I


